

350 Bedford Street, Suite 404 Stamford, CT 06901

### **Oceanweather Field Variable Definitions:**

SWAN Model Output, descriptions and equations copied from the SWAN User Manual:

Julian Date where 1 Jan, 1900 = 2; 2 Jan, 1900 = 3 etc. Date in YYYYMM format Date in DDHHMM format

**WD** Wind Direction (deg from):

From which the wind is blowing, clockwise from true north in degrees (meteorological convention).

**WS** Wind Speed (m/s):

Effective neutral wind at a height of 10 meters, consistent with a 10-minute wind, units in meters/second.

**ETOT or M**<sup>0</sup> Total Variance of Total Spectrum (m<sup>2</sup>):

The sum of the variance components of the hindcast spectrum, over all of the spectral bins of the wave model, in meters squared. It is defined as:

$$ETOT = \iint E(\omega,\theta)d\omega d\theta = \iint E(\sigma,\theta)d\sigma d\theta$$

Where  $E(\omega,\theta)$  is the variance density spectrum and  $\omega$  is the absolute radian frequency determined by the Doppler shifted dispersion relation. However, it is easier to compute using  $\sigma$ , which is the nominal frequency of each frequency bin.

**TP** Peak Spectral Period of Total Spectrum (s):

Peak period is the reciprocal of peak frequency, in seconds. Peak frequency is computed by taking the spectral density in each frequency bin, and fitting a parabola to the highest density and two neighboring bins on each side.

**VMD or DIR** Vector Mean Direction of Total Spectrum (deg to which):

To which waves are traveling, clockwise from north in degrees (oceanographic convention) as defined by Kuik et al., 1988.

$$VMD = \frac{180}{\pi} \arctan\left(\frac{\int \sin\theta E(\sigma,\theta) d\sigma d\theta}{\int \cos\theta E(\sigma,\theta) d\sigma d\theta}\right)$$

**PWD** Peak Wave Direction of Total Spectrum (deg to which):

The discrete directional bin with maximum energy in degrees (oceanographic convention).

$$PWD = \int E(\sigma,\theta)d\sigma$$

**HS or HSig** Significant Wave Height (m):

4.000 times the square root of the total variance, in meters.

**HSSw** Significant Wave Height from the Swell Partition (m):

Significant wave height associated with the low frequency part of the spectrum, computed as:

HSSw = 
$$4\sqrt{\int_0^{\omega_{swell}}\int_0^{2\pi} E(\omega,\theta)d\omega d\theta}$$

where  $\omega_{swell} = 2\pi f_{swell}$  and  $f_{swell} = 0.1$  Hz by default, unless changed by the "quantity" command.

**T01 or TM** Significant Period of Total Spectrum (s)

The significant or mean period (seconds) is the mean of the zero up-crossing periods associated with significant wave height. It is calculated using the total variance ( $M_0$ , see ETOT) and the first moment ( $M_1$ ):

$$T_{01} = 2\pi \left(\frac{M_0}{M_1}\right)$$

**T02 or TZ** Mean Zero-Crossing Period of Total Spectrum (s):

The wave period theoretically equivalent with mean zero-downcrossing period Tz. It is calculated using the total variance ( $M_0$ , see ETOT) and the second moment ( $M_2$ ):

$$T_{02} = 2\pi \sqrt{\left(\frac{M_0}{M_2}\right)}$$

**PER** Average Period (s)

By default, same as T01 above. T01 and PER are equivalent when the SWAN setting for "power" equals 1 which is set by the "quantity" command. If "power" equals 0, then PER is equivalent to TMM10.

**TMM10** Mean Absolute Wave Period (s)

Also know as the energy wave period (seconds), TMM10 is calculated using the total variance  $(M_0)$  and the negative first moment  $(M_{-1})$ :

$$T_{MM10} = 2\pi \left(\frac{M_{-1}}{M_0}\right)$$

**DirSpr** Directional Spreading or Directional Standard Deviation (deg)

The one-sided directional width of the spectrum, DirSpr, is computed as conventionally for pitchand-roll buoy data (Kuik et al, 1988): Oceanweather Field Variable Definitions

$$DirSpr = \left(\frac{180}{\pi}\right) \sqrt{\int_0^{2\pi} \left(2\sin\left(\frac{\theta - \overline{\theta}}{2}\right)\right)^2 D(\theta) d\theta}$$

### **SPECPK or QP** Spectral Peakedness:

The peakedness of the wave spectrum represents the degree of randomness of the waves. A smaller value of SPECPK indicates a wider spectrum which means it has an increased degree of randomness (e.g. shorter wave groups). A larger value of SPECPK indicates a narrower spectrum which means a decreased degree of randomness and a wave field that is more organized (e.g. longer wave groups).

$$SPECPK = 2 \frac{\iint \sigma E^2(\sigma, \theta) d\sigma d\theta}{(\iint E(\sigma, \theta) d\sigma d\theta)^2}$$

**QB** Fraction of Breaking Waves

Fraction of breakers in expression of Battjes and Janssen, 1978.

**UBOT** RMS of the Maxima of the Orbital Motion near the Bottom (m/s) Root-mean-square value in meters per second of the maxima of the orbital motion near the bottom defined as:

$$U_{bot} = \sqrt{2} \cdot U_{rms}$$

**URMS** RMS of the Orbital Motion near the Bottom (m/s)

Root-mean-square value in meters per second of the orbital motion near the bottom defined as:

$$U_{rms} = \sqrt{\int_0^{2\pi} \int_0^\infty \frac{\sigma^2}{\sinh^2 kd}} E(\sigma,\theta) d\sigma d\theta$$

**ForceX** X-Coordinate of Wave-Induced Force per unit Surface Area  $(N/m^2)$ ForceX and ForceY are the gradient of radiation stresses of the wave model coordinate system. The Forces are defined as

$$F_x = -\frac{\partial S_{xx}}{\partial x} - \frac{\partial S_{xy}}{\partial y}$$
$$F_y = -\frac{\partial S_{yx}}{\partial x} - \frac{\partial S_{yy}}{\partial y}$$

Where S is the radiation stress tensor given by the following three equations and n is the group velocity over the phase velocity:

#### oceanweather inc.

Oceanweather Field Variable Definitions

$$S_{xx} = pg \int \left( n \cos^2 \theta + n - \frac{1}{2} \right) E d\sigma d\theta$$
  

$$S_{xy} = S_{yx} = pg \int \left( n \sin \theta \cos \theta \right) E d\sigma d\theta$$
  

$$S_{yy} = pg \int \left( n \sin^2 \theta + n - \frac{1}{2} \right) E d\sigma d\theta$$

**ForceY** Y-Coordinate of Wave-Induced Force per unit Surface Area (N/m<sup>2</sup>) See ForceX.

**BFI** Benjamin-Feir Index:

The Benjamin Feir Index is also known as Steepness-Over-Randomness Ratio and can be used to quantify the probability of freak waves. It is computed:

BFI = 
$$\sqrt{2\pi}$$
 (Steep)(SPECPK)

**Steep** Average Wave Steepness:

Ratio of wave height (HS) to wave length (WLEN):

Steep = 
$$\frac{HS}{WLEN}$$

# Additional variables referenced above that are not typically archived:

**MO1 or M01 or M1** First Spectral Moment of Total Spectrum  $(m^2/s)$ : E( $\omega$ ,  $\theta$ ) is the variance density spectrum and  $\omega$  is the absolute radian frequency determined by the Doppler shifted dispersion relation. However, for ease of computation, M<sub>1</sub> can be determined as follows:

$$M_1 = \iint \omega E(\sigma, \theta) d\sigma d\theta$$

**MO2 or M02 or M2** Second Spectral Moment of Total Spectrum  $(m^2/s^2)$ :  $E(\omega, \theta)$  is the variance density spectrum and  $\omega$  is the absolute radian frequency determined by the Doppler shifted dispersion relation. However, for ease of computation, M<sub>2</sub> can be determined as follows:

$$M_2 = \iint \omega^2 E(\sigma, \theta) d\sigma d\theta$$

**M**.<sub>1</sub> Negative First Spectral Moment of Total Spectrum  $(m^2/s^{-1})$ :

 $E(\omega, \theta)$  is the variance density spectrum and  $\omega$  is the absolute radian frequency determined by the Doppler shifted dispersion relation. However, for ease of computation, M<sub>-1</sub> can be determined as follows:

Oceanweather Field Variable Definitions

$$M_{-1} = \iint \omega^{-1} E(\sigma, \theta) d\sigma d\theta$$

**WLEN** Wave length (m)

By default, the mean wave length is defined with p=1 using the following equation:

$$WLEN = 2\pi \left(\frac{\iint k^{p} E(\sigma, \theta) d\sigma d\theta}{\iint k^{p-1} E(\sigma, \theta) d\sigma d\theta}\right)^{-1}$$

# References:

SWAN User Manual, https://swanmodel.sourceforge.io/download/zip/swanuse.pdf

Kuik, A.J., G. PH. Van Vledder, and L. H. Holthuijsen, 1988. A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data, *J. of Phy. Ocean.*, 18:7, 1020-1034. https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2

© 2025 Oceanweather Inc., All rights reserved